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The quality of knowledge underlying students’ algebraic
thinking is a major concern of K-12 mathematics teaching and
reform-driven curriculum documents.  In this paper the author
examines this issue by characterising a group of high school
students’ algebraic knowledge and patterns of use of that
knowledge during the solution of selected problems.  Results
show that these students tended to show acceptable levels of
proficiency with problems that involved substitution of values
and simplification of equations.  Students experienced
difficulties with the interpretation of algebraic relations.
Multiple regression analysis showed that knowledge about
equations and pattern formation was a predictor of students’
success at interpretation of graphs of linear functions.  These
results are interpreted as suggesting that understanding and
analysis of graphs could be facilitated by teaching approaches
that focus on the construction of robust schemas about patterns
and symbolic relations in algebra.

INTRODUCTION

Algebra provides a conceptual foundation for the understanding
of a range of other concepts that students are expected to learn in
school mathematics.  The importance of this area of mathematics
has been underlined by the increasing attention the teaching and
learning of algebra have received over the past decade from teachers
and researchers alike.  Children’s understanding of algebraic
concepts begin in the early years of their school life and continues
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throughout their mathematics learning experiences in high school
and beyond.

The ubiquity of the subject matter of algebra in K-12 mathematics
curriculum further attests to its critical role in helping students
develop an appreciation of links that exists among other topics in
mathematics.  Indeed, this issue has been given considerable
attention in the agenda of major curricular documents (National
Council of Teachers of Mathematics, 1989, 2000).  The recently
concluded 12th ICMI Study on the theme, ‘The Future of the Teaching
and Learning of Algebra’ further highlights the importance of
algebra and brought into focus the many difficulties faced by
students in learning algebra.

Despite significant strides that we have made in improving
students’ confidence and competence in using algebraic skills and
concepts, it has been suggested that more work needs to be done in
this area as students continue to experience difficulty in going
beyond the meaningless manipulation of equations and symbols
(Chazan, 1996; Stacey & MacGregor, 1999; Kirshner & Awtry, 2004).
In the study reported here the author address this issue by exploring
the nature of algebraic knowledge that drives students’ cognition
during problem solving.

THEORETICAL CONSIDERATIONS

Connections and mathematical understanding

The development of mathematical understanding has been analysed
from a number of vantage points.  Of these, the investigation of
connections constructed by students has been a central theme of
recent debate.  It has been suggested that students learn mathematics
best when they are encouraged to ‘organise their information by
making connections and forming relationships’ (Sowder, 2001, p.4).
Hence the analysis of connections seems to be an effective research
strategy in the examination of mathematical understanding.  The
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focus on connections has had a long history in psychological
literature on concept development and problem solving not only in
mathematics but also in other domains such as geometry, chess and
physics.  In their analysis, Carpenter and Lehrer (1999) characterised
mathematical understanding as involving problem solving,
constructing relationships and reflecting on one’s own previous
experiences with a particular topic of mathematics.  As mathematical
understanding is a developmental process, models of learning that
specify constructions are appropriate for describing relations
between the above activities.  The quality of the connections can
also be expected to have a major impact on how prior knowledge is
used in a variety of learning situations (Schoenfeld, 1992).

Research from cognitive psychologists and mathematics
educators has advanced several theoretical frameworks about
concepts and their growth. In this paper, the author adopts the
network perspective in making judgments about mathematics
knowledge development.  According to this view, conceptual
growth and mathematical understanding can be interpreted in terms
of the building of organised knowledge clusters called schemas.
Schemas can be visualised as knowledge structures or chunks
having one or more core concepts which are connected to other
concepts and/or schemas by relational statements.

According to this framework of knowledge development, the
quality of a schema is a function of two variables: the spread of the
network and the strength of the links between the various
components of information located within the network (Anderson,
2000).  A complex schema can be characterised as having a large
number of network of nodes that are built around one or more core
concepts.  Further, in a mature schema, the links between the various
nodes in the network are robust, a feature which contributes to the
ready accessing and use of that schema during problem-solving
and other learning situations.  A well-structured schema can also
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benefit students by helping them assimilate incoming new
mathematical information with less cognitive effort.

The acquisition of mathematical concepts in K-12 can be seen as
the construction of schemas each with differing levels of
organization and complexity.  The difference between a good student
and a poor student is that the good student has built up schemas
that are more complex, dense and better organised than his low-
achieving peer.  Chinnappan (1998) used the schema framework to
compare the quality of geometry knowledge between high- and
low-achieving students.  Thus, a useful strategy would be to analyse
the schemas of students for gaps in their knowledge and
organisational quality.  According to the schema framework of
knowledge and performance, an impoverished schema is not
conducive to solving novel problems and describing relations
among concepts in mathematics because it does not help students
extend their prior knowledge to new boundaries of understanding.
Such schemas can be characterised as having a limited number of
conceptual points to connect with.

STRUCTURE OF ALGEBRAIC SCHEMA

While schemas provide a broad theoretical framework for analysing
organisational features of students’ algebraic knowledge there is a
need to disentangle components of the schema that underlies
algebraic understanding.  Literature on the development of algebraic
understanding has advanced two constructs: procedural and
conceptual structures.  Broadly speaking, students who have
attained procedural understanding can be expected to perform
operations involving algebraic expressions such as simplifying
equations.  Conceptual understanding, on the other hand refers to
the elucidation of relations between algebraic expressions and
components that make up a particular algebraic statement.  Sard
(1991) used a process-object model to articulate the relationship
between procedural and conceptual elements of algebra.
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Students’ experiences with algebra begin with the acquisition of
knowledge about procedures or operations that are used in dealing
with algebraic situations.  These procedures include strategies and
rules for simplifying, factoring and solving equations.  Also included
in this set of skills is an understanding of conventions and symbols
that are used to represent algebraic expressions.  One such
convention could be the use of letters to represent variables or f(x)
to represent function of x.  As students’ experiences with algebra
mature they are able to transfer knowledge of procedures to
conceptual characteristics of relations.  Kieren (1992) referred to this
advancement as the evolution from the ‘procedural to structural’
(p.413).  She argued that most students learn procedural skills but
do not make the transition to structural understanding.  Tall and
Thomas (1991) also alluded to this link in their analysis of the nature
of difficulties faced by students in learning algebra.  Students who
have developed multiple representations of an algebraic relationship
can be expected to show high levels of structural understanding of
variables that are embedded in that relationship.

The above analysis suggests that, among other things, algebraic
schemas consist of networks of information nodes that are
procedural and conceptual in nature.  Accordingly, students who
have built up a better connected and organised algebraic schema
can be expected to make a smooth transition from the procedural
to the conceptual aspects of the knowledge structure.  For instance,
in order for students to develop a sophisticated schema, say, about
solution of quadratic equations, they need to make multiple
connections among variables, families of equations and unknowns.
As their schema become elaborated further one might expect to see
them constructing equations to model a problem situation.  In this
sense the maturation of schemas can be seen as progressing along
the procedural-conceptual continuum.  Algebraic schemas with a
higher proportion of procedural information can be argued to be
less complex than one that has more conceptual information.  In a
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problem situation both components of the knowledge base are
necessary but conceptual knowledge is more useful in generating
powerful representations of a given problem.  In this sense, one
could argue that the conceptual part of the schema is indicative of
deeper understanding of algebra.

GRAPHICAL INFORMATION

Although schemas provide a useful conceptual framework within
which to examine the growth of general algebraic thinking and
knowledge development, the complexity of the area warrants that
we decompose the macro-schema and consider the array of algebraic
sub-schemas and their relations if we are to make progress in
depicting the type of knowledge that could be useful for students
to become proficient problem solvers in this domain.  For example,
equations and the solution of equations is one important part of
students’ knowledge.  This knowledge could be organised into
Equation Schema (ES).  ES could include information that is
conceptual as well as procedural.  Pattern identification is an
important skill in algebra (Kieren, 1992).  The knowledge that drives
this activity could reside in the Pattern Schema (PS).  PS could
include a range of information including strategies for exploring
patterns in a given situation.  While ES and PS appear to be two
distinct entities, there are important relations between the two
knowledge structures.  For instance, the fact that some patterns can
be expressed as equations is an expression of relational information
between the schemas.  A third area in algebra involves graphs and
graphing.  This area of the learner’s algebraic knowledge could be
located in Graphical Schema (GS).  Skills in drawing and exploring
the meaning of variables that are anchored by graphs are closely
linked to students’ understanding of patterns and equations.  This
line reasoning suggests that the elucidation of connections among
these schemas would help us gain further insight into the growth
of algebraic understanding.  In the present study, this issue is
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addressed by investigating knowledge-based predictors of
successful performance in graphical problems.

The purpose of the present study was to describe the quality of
algebraic schema developed by a group of Year 10 students.  In
particular, the author was interested to examine the type of
procedural and conceptual knowledge that students access in
problem contexts, and the integration of these knowledge
components during graphical representation of equations. The
research questions for this study are:

• What is the nature of procedural knowledge that Year 10
students activate during the solution of algebra problems?

• What is the nature of conceptual knowledge that Year 10
students activate during the solution of algebra problems?

• Is there evidence of transition from using procedural to
conceptual knowledge during the solution of algebra
problems among Year 10 students?

• Are there relations among algebraic schemas that have
differential procedural and conceptual information?

• What are the indicators of success in graphical representation
of linear equations?

METHODOLOGY

Participants

The participants in this study consisted of 58 Year 10 students (28
males and 30 females) from a metropolitan high school.  The
students came from two classes representing ‘average to above
average’ ability levels of the school’s Year 10 cohort.  All students
had completed the algebra topic.  Students in the study also reflected
the socio-cultural composition of the local community.
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Instrument

The Algebra Schema and Access Instrument (ASAI) was developed
for the study.  The instrument contained 16 problems all of which
required the accessing and use of algebraic knowledge.  Problems
14 and 15 consisted of three (14a, 14b, 14c) and two parts (15a, 15b)
respectively.  An important consideration in the development of
the instrument was the identification of algebraic schemas that one
would expect Year 10 students to activate during the course of their
solution attempts.  It is important to point out that I have used a
problem-based schema identification approach, and that schemas
activated by the students were necessarily limited by the problem
contexts.  Selected items from ASAI appear in Appendix 1.

It is possible that a non-problem-based strategy could be expected
to generate a different set of schemas.  However, a problem-driven
schema activation and use by the students could be argued for to
provide a more complete picture about the quality of schemas that
students have built up because it has the potential to reveal more
complex connections among procedural and conceptual
components that exist not only within schemas but among schemas.
The latter complex of connections among schemas has been argued
to exert a major influence in the construction of problem
representations (Sweller & Cooper, 1985).  This line of reasoning
was used in classifying the 16 problems into six Problem Categories
(PCs) as shown in Table 1. A selected set of the problems from each
category is provided in Appendix 1.
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Table1
Problems and problem schema categories

       Problems      Problem Category (PC)

1 and 2  A - Factorisation

3 and 4  B - Evaluation

5, 6, 7, 8, 9 and 10  C - Solution of Equations

11, 12 and 13  D - Word Problems

14a, 14b and 14c  E - Pattern Generation

15a, 15b and 16  F - Graphical Interpretation

Procedure

The class teachers administered the instrument to students during
normal class periods. The study was conducted in the fourth term
of the school’s academic year.  Students were given 60-90 minutes
to complete the problems.  Students were encouraged to attempt
all the 16 problems.  They were also asked to write down every step
in their solution attempts even if they did not arrive at the ‘correct’
answer. Students were permitted to use calculators if required.

The following scoring scheme was developed to code students’
solution attempts.  There were two major considerations in this
scheme: solution approach and generation of relevant values.  The
former was concerned with problem representation and the latter
factor provided information on the use of appropriate schemas to
generate values that were relevant to the problem representation.
While solution outcome was important it was not the sole factor in
the scoring scheme.  The approach-based analysis is argued to
provide a measure of the type of schemas that were used by the
students during the search for solution.  The scheme was trialled
with two independent coders who were mathematics teachers and
researchers in order to resolve potential differences in the
interpretation of the codes.  The final scoring system was used to
code students’ solution transcripts.
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0 - No attempt was made to solve the problem.
1 - Solution was attempted but both the approach and values

generated were incorrect.
2 - Solution was attempted with a correct approach but none of

the values generated were correct or relevant; incorrect
solution outcome.

3 - Solution was attempted with a correct approach; one correct
value was generated; incorrect solution outcome.

4 - Solution was attempted with a correct approach; two correct
values were generated; incorrect solution outcome.

5 - Solution was attempted with a correct approach; three or more
correct values were generated; correct solution outcome.

Results

Results of the analysis of students’ solution attempts to individual
problems are presented in Table 2.  The results show that students
attempted all the 16 problems with varying degrees of success.  The
means and standard deviations indicate that some problems were
more difficult (Problems 6-10, 13-16) than others (Problems 1, 2, 3,
11 and 12).  From the representational angle the solution attempts
reveal a number of patterns.  Firstly, students constructed correct
representations for most of the problems in PC A and PC B, and a
few problems in PC C. In PC D, students experienced more success
with problems 11 and 12 in comparison with 13.  In general, students
experienced difficulty with the solution of all the problems in PCs
E (Pattern Generation) and F (Graphical Representation).  In more
than 50% of the problems presented students scored mean values
of 1 or less indicating failure to attempt or construction of incorrect
problem representations.

Results in Table 2 also provide insight into the approach the
students adopted in tackling the problems.  A mean value that is
less than 2 can be interpreted as suggesting that the participating
students either did not attempt a particular problem or used an
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incorrect approach in their attempt to reach the problem goal.  Table
2 shows that this was evident in the case of problems 6, 7, 8, 9b and
10 (PC C).  While students had experienced success with some of
the problems in this category, with the more difficult problems,
students tended either not attempt or adopt an incorrect solution
strategy.  This pattern in their problem solving behaviour was also
evident in the other PCs: Problem 13 (PC D); problems 14a, 14b, 14c
(PC E), problems 15a, 15b, 16 (PC F).

Table 2
Descriptive Statistics of Solution Scores

           Problems     Mean        SD
1 2.55 1.59
2 3.59 1.60
3 4.64 1.18
4 2.19 2.08
5 2.12 1.76
6 1.69 1.85
7 1.71 1.36
8 1.48 1.53
9a 2.17 2.15
9b 0.66 1.19
10 1.09 1.42
11 3.48 1.75
12 4.48 1.41
13 0.93 0.72
14a 2.40 2.25
14b 1.64 2.13
14c 1.21 1.87
15a 1.48 1.75
15b 1.21 1.63
16 1.02 1.10
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Correlations among representations

In order to examine the potential relations among the five problem
categories and associated schemas, Pearson correlation coefficients
were computed.  The results of this analysis appear in Table 3.  There
were low correlations between the Pattern Generation and the other
five PCs.  The correlations among Factorisation, Evaluation of
Solutions, and Graphical Interpretation PCs can only be described
as moderate. Scores on Word Problems PC had little or negligible
association with the other PCs.  The activation of schemas for the
Factorisation PC was moderately correlated with those relevant to
Solution of Equations and Graphical Interpretation.
Table 3
Correlations among problem categories

    Factorisation    Evaluation      Solution       Word     Pattern      Graphical
 of Equations   Problems  Generation     Interpreta-

          tion

Factorisation 0.51*  .60**  .09  .28*  .53**

Evaluation  .43**  .17  .23*  .45**

Solution of
Equations  .15  .31*  .58*

Word
Problems  .05  .26*

Pattern
Generation  .46**

**p<.01; *p<0.05

Regression analysis

The link knowledge about graphs, equations and pattern was the
focus of the final research question.  Specifically, the interest here
was to examine the predictability of activation of Graphical Schema
(GS). In order to answer this question, a standard multiple regression
was performed between GS as the dependent variable and Equation
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Schema (ES) and Pattern Schema (PS) as independent variables.
Hair, Anderson, Tatham and Black (1995) argued that the minimum
R2 that can be found with a Power of .80 (a = 0.05) for a sample of 50
cases involving 2 independent variables was 19.  The authors also
indicated that the desired ratio of number of independent variables
to sample size for the purposes of generalizability of results of a
regression analysis is about 1 to 15-20.  The present study involved
the participation of 58 students and two independent variables.  This
ratio of participants to independent variables is, therefore, regarded
as being sensitive to R2  values that are above 19, as well as meeting
the requirements for generalizability of results.

As the regression analysis was concerned with linear relations
and associated schemas, it was necessary to exclude any items from
ASAI that involved quadratic equations.  GS was measured on the
basis of scores on items 15a and 15b.  Scores for ES was based on
the total solution scores of items 5, 6, 9 and 10.  The second
independent variable (PS), likewise, was computed by summing
up scores on items 14a, 14b and 14c.

Table 4 shows the bi-variate correlations among the three
variables.  There were significant positive correlations amongst the
dependent and independent variables. There was evidence of
moderate correlation between the two independent variables.

Table 4
Bi-variate Correlations

  GS      ES      PS

GS 1.000      .678**     .460**

ES    1.000     .316*

PS    1.000

** p < 0.01; ** p < 0.05
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A stepwise regression analysis was performed using SPSS
REGRESSION in order to determine if addition of scores for ES and
PS improved prediction of scores on GS. Table 5 shows the model
summary. Table 6 and 7 show associated ANOVA and Coefficients
respectively. As can be seen from Table 5, activation of ES was the
best indicator of success at solving graphical problem as measured
by ES (F(1,56) = 47.7, p<0.001)) accounting for 45% of the variance
(adjusted R2). The addition of PS accounted for additional 6% of the
variance, yielding a significant two variable model, F(2, 55) = 30.6,
p<0.001. Overall, GS, which involved the activation of schemas
relevant to analysis of graphs, was best predicted by activation of
knowledge associated with equations and pattern identification.

Table 5
Model Summary

Model   R   R Square Adjusted          Std. Error
      R Square              of the

          Estimate

1 .678a .460      .450 2.3288

2 .726b .527      .510 2.1992

a  Predictors: (Constant), ES
b  Predictors: (Constant), ES, PS



JOURNAL OF SCIENCE AND MATHEMATICS EDUCATION IN S.E. ASIA         Vol. 27, No. 2

126

Table 6
ANOVA

Model Sum of df  Mean F     Sig.
      Squares Square

1 Regression 258.707   1 258.707    47.703    .000a

Residual 303.707 56     5.423
Total 562.414 57

2 Regression 296.414   2 148.207    30.644     .000b

Residual 266.000 55     4.836
Total 562.414 57

a  Predictors: (Constant), ES
b  Predictors: (Constant), ES, PS
c  Dependent Variable: GS

Table 7
Coefficients

 Unstandardized        Standardized   t      Sig.
    Coefficients           Coefficients

Model     B    Std. Error        Beta

1 (Constant) -.356         .537       -.664     .509
 ES  .394         .057            .678       6.907     .000

2 (Constant) -.794         .531     -1.497     .140
 ES  .344         .057            .592      6.056     .000
 PS  .158         .056            .273      2.792     .007

Dependent Variable: GS

DISCUSSION

The present study attempted to answer five questions that are
related to high school students’ knowledge and understanding of
algebraic concepts by examining schema activation during problem
solving.  An algebraic schema can be constructed from an array of
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information.  In the present study, the focus was on the composition
of the schemas and their relations.

While schemas vary in their content and complexity of
connections, it was argued that the solution of problems in PCs A
and B would demand information that was more procedural in
character than those in other PCs.  Analysis of solution attempts to
problems that mainly involved application of procedural skills (PCs
A and B) indicated that students had acquired a reasonable level of
this type of knowledge of algebra.  This was evidenced by the high
proportion of success with problems that required substitution of
numerical values into a given expression.  Students also showed
that they could expand and simplify algebraic expressions.
However, students tended to experience difficulty in finding
solutions to a number of equations that had a complex structure.
Taken together, these results suggest that while students have built
up a repertoire of process skills there were also knowledge gaps in
their procedural knowledge.  It is also possible that the solution of
more complex equations in PC C required understandings that were
supported by schemas that were more conceptually loaded.

Analysis of solution attempts relevant to research questions two
and three focused on students’ conceptual understanding of
algebraic expressions and evidence of establishing links between
conceptual and procedural elements in the given problems.  The
mean scores indicate a high proportion of the students could not
generate equations to model a given situation, and solve that
equation. In addition, students experienced difficulty in representing
and interpreting graphical forms of given equations (Category F).
An equation is a symbolic form of a relationship that can be
expressed in a graphical mode.  A large number of students who
participated in this study failed to translate the symbolic to the
graphical form of a given equation and vice versa.  The present
results are consistent with findings of a number of other recent
investigations of problem solving that involves modelling of
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problems in terms of algebraic expressions (Nathan, Kintch, &
Young, 1992; Schoenfeld & Arcavi, 1988).

 In the present study, students performed poorly in a task that
involved the establishment of a relation between two variables
(Problems 14a, 14b, 14c).  This problem can also be seen as exploring
a pattern that exists between two sets of numbers.  While a number
of students could determine the value of one variable given the
other, these students did not describe the overall relationship in
any meaningful manner.  All three problems were related in that
14a was a particular case of 14b and 14c. It is noteworthy that
students made better progress with 14a than the other two problems.
The solution to 14a could be used in deriving solutions to 14b and
14c by finding values of P for different value of Q.  This approach
would lead them to conclude that values of P are increasing in threes.
Further reasoning along these lines would help them construct the
general relation, P=3Q-2.  The relative success with 14a shows that
students were more comfortable with substituting values rather than
visualising the pattern.

The above analysis reveals an important interaction between
procedural and conceptual knowledge where the procedural schema
appear to drive the actions of the students.  I argue that the accessing
of conceptual schema about relations and variables would aid in
making progress in completing problems 14b and 14c.  These results
also reflect those obtained by Stacey (1989) who found that students
had difficulty in reasoning that led to generalising a pattern among
variables, and the lack of transition from procedural to conceptual
knowledge of algebra (Kieren, 1992).

Students in the present study also did not seem to understand
the notion of ordered pairs (x,y), and that there was a rule that
connected values x with values of y.  This misunderstanding was
evident in the solution attempt of Problem 10 where students were
required to decide if a point was a solution to the given equation.  It
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would seem that these students had yet to establish a link between
the coordinates of the point and the rule that was expressed in the
equation.  The mean score for this problem was 1.09 suggesting
most students did not attempt or used an incorrect representation.
Solution attempts to Problem 10 again provide further support to
the claim that students’ algebra schema lacked the appropriate
conceptual information.

The fourth question in the present study focussed on potential
relations that might exist among algebraic schemas with different
proportions of procedural and conceptual information.  Correlation
analysis showed problem categories that required the use of
procedural information were moderately associated with each other
such as Factorisation and Evaluation of algebraic expressions. As
expected there were weak or absence of relations among problem
categories that required the use of a blend of procedural and
conceptual information.  For example, solution to Factorisation
problems was not associated strongly with solution to problems in
the Word and Pattern Generation category (Table 3).  These results
suggest that students either had not developed the required
conceptual schemas or tended not to integrate their procedural
knowledge with conceptually organised schemas.  The moderate
positive association amongst schemas from the categories of
Graphical Interpretation, Factorisation and Solution of Equations
was interesting perhaps suggesting the role of procedural schemas
in analysing linear functions.

Some tentative implications for skill development in the
understanding of graphs and graphing can be identified from the
data.  Regression analysis suggests that the activation of equation
and pattern generating schemas best predict students’ performances
in problems that involved interpretation of graphs.  The ability to
recognize the structure of equations and relations embedded among
the variables constitutes a key factor in the visual analysis and
representation of graphs.  The predictor variables can be seen as a
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blend of items of information that would assist students in making
connections between the symbolic and graphical models of linear
relationships.  The results reported here are also compatible with
Leinhardt, Zaslavsky and Stein’s (1990) view that algebraic and
graphical data are separate but related in powerful ways.  This study,
along with that of Bell and Janvier (1981) reinforces the notion that
the interpretation of graphs is predicated on multiple schemas, and
that the assessment of understanding in this area of school
mathematics should involve an array of assessment techniques.

On a more general level, the results of the present study are
relevant to the debate over the causal relations between procedural
and conceptual knowledge not only in the solution of algebra
problems but mathematical problems.  The present result is
consistent with earlier research by Rittle-Johnson and Alibali (1999)
who found that conceptual knowledge has a greater influence not
only on the understanding of problems but also on the further
development of procedural knowledge.

While it is too early to speculate, the present findings do suggest
that teaching needs to focus on the development of both procedural
and structural or conceptual aspects of algebra.  It seems that higher
levels of procedural skill development is a necessary but not a
sufficient condition for students to solve problems that involve
generation and manipulation of variables in an equation.  Thus
learning experiences need to make explicit the connections between
these two aspects of algebraic knowledge.

This study represents a modest attempt at exploring the
construction of representations for algebraic problems and the
nature of schemas that support that construction.  While there is
some support here for the claim that teaching and learning algebra
needs to focus on facilitating the building of more conceptually
based schemas there is a need for a fine-grained analysis of algebraic
schemas that drive problem representation.
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APPENDIX 1

1. Factorise the expression 3x 2 + 6x - 9

4. If f(x) = 3x2 - 7x, what is the value of f(2.5)?

7. Solve the equation x +     = 5

11. A photograph is 3 cm longer that it is wide.  Its area is 40 cm2.

Find its length and width.

Q  P

1   1

3   ?

4 10

6 16

n   ?

14(a). What is P when Q = 3?

14(b). What is P when Q = n?

14(c). Describe the relationship between P amd Q.

15(a). Graph the equation 5y = -15 +3x using the following grid.

6
x

5
4
3
2
1

-1
-2
-3
-4
-5

-5 -4 -3 -2 -1 0   1  2  3   4  5 x

y
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15(b). Graph the equation y =     using the following grid.
7
2

5
4
3
2
1

-1
-2
-3
-4
-5

-5 -4 -3 -2 -1 0   1  2  3   4  5 x

y


